Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1386766

ABSTRACT

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Alphavirus/genetics , Alphavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Gene Expression , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Mice , Mice, Transgenic , Replicon/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Transgenes , Treatment Outcome , Vaccination/methods , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
2.
Signal Transduct Target Ther ; 6(1): 213, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1249203

ABSTRACT

Although inoculation of COVID-19 vaccines has rolled out globally, there is still a critical need for safe and effective vaccines to ensure fair and equitable supply for all countries. Here, we report on the development of a highly efficacious mRNA vaccine, SW0123 that is composed of sequence-modified mRNA encoding the full-length SARS-CoV-2 Spike protein packaged in core-shell structured lipopolyplex (LPP) nanoparticles. SW0123 is easy to produce using a large-scale microfluidics-based apparatus. The unique core-shell structured nanoparticle facilitates vaccine uptake and demonstrates a high colloidal stability, and a desirable biodistribution pattern with low liver targeting effect upon intramuscular administration. Extensive evaluations in mice and nonhuman primates revealed strong immunogenicity of SW0123, represented by induction of Th1-polarized T cell responses and high levels of antibodies that were capable of neutralizing not only the wild-type SARS-CoV-2, but also a panel of variants including D614G and N501Y variants. In addition, SW0123 conferred effective protection in both mice and non-human primates upon SARS-CoV-2 challenge. Taken together, SW0123 is a promising vaccine candidate that holds prospects for further evaluation in humans.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Female , Humans , Immunogenicity, Vaccine/immunology , Lymphocyte Activation/immunology , Mice , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Th1 Cells/immunology , Th1 Cells/virology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Viral Vaccines/immunology
3.
J Mol Cell Biol ; 13(3): 197-209, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1145182

ABSTRACT

Although millions of patients have clinically recovered from COVID-19, little is known about the immune status of lymphocytes in these individuals. In this study, the peripheral blood mononuclear cells of a clinically recovered (CR) cohort were comparatively analyzed with those of an age- and sex-matched healthy donor cohort. We found that CD8+ T cells in the CR cohort had higher numbers of effector T cells and effector memory T cells but lower Tc1 (IFN-γ+), Tc2 (IL-4+), and Tc17 (IL-17A+) cell frequencies. The CD4+ T cells of the CR cohort were decreased in frequency, especially the central memory T cell subset. Moreover, CD4+ T cells in the CR cohort showed lower programmed cell death protein 1 (PD-1) expression and had lower frequencies of Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17A+), and circulating follicular helper T (CXCR5+PD-1+) cells. Accordingly, the proportion of isotype-switched memory B cells (IgM-CD20hi) among B cells in the CR cohort showed a significantly lower proportion, although the level of the activation marker CD71 was elevated. For CD3-HLA-DR- lymphocytes in the CR cohort, in addition to lower levels of IFN-γ, granzyme B and T-bet, the correlation between T-bet and IFN-γ was not observed. Additionally, by taking into account the number of days after discharge, all the phenotypes associated with reduced function did not show a tendency toward recovery within 4‒11 weeks. The remarkable phenotypic alterations in lymphocytes in the CR cohort suggest that  severe acute respiratory syndrome coronavirus 2 infection profoundly affects lymphocytes and potentially results in dysfunction even after clinical recovery.


Subject(s)
CD8-Positive T-Lymphocytes/virology , COVID-19/blood , Leukocytes, Mononuclear/virology , SARS-CoV-2/pathogenicity , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Cell Lineage/genetics , Cell Lineage/immunology , Female , Gene Expression Regulation/immunology , Granzymes/genetics , Humans , Interferon-gamma/genetics , Leukocytes, Mononuclear/pathology , Male , Middle Aged , T-Box Domain Proteins/genetics , Th1 Cells/immunology , Th1 Cells/virology , Th17 Cells/immunology , Th17 Cells/virology , Th2 Cells/immunology , Th2 Cells/virology
4.
Vaccine ; 38(48): 7581-7584, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-845859

ABSTRACT

Today, Coronavirus Disease 2019 (COVID-19) is a global public health emergency and vaccination measures to counter its diffusion are deemed necessary. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of the disease, unleashes a T-helper 2 immune response in those patients requiring intensive care. Here, we illustrate the immunological mechanism to train the immune system towards a more effective and less symptomatic T-helper 1 immune response, to be exploited against SARS-CoV-2.


Subject(s)
BCG Vaccine/administration & dosage , Bacterial Vaccines/administration & dosage , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunity, Innate/drug effects , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Propionibacteriaceae/immunology , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Corynebacterium , Humans , Immunization Schedule , Immunogenicity, Vaccine , Interleukins/genetics , Interleukins/immunology , Patient Safety , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Th1-Th2 Balance/drug effects , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/virology , Vaccination , Viral Vaccines/administration & dosage , Viral Vaccines/biosynthesis
5.
Med Hypotheses ; 143: 110087, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-653172

ABSTRACT

COVID-19 is a major public health issue around the world and new data about its etiological agent, SARS-CoV-2, are urgently necessary, also translating the scientific knowledge acquired on its more similar predecessors, SARS-CoV-1 and MERS-CoV, the coronaviruses responsible for SARS and MERS, respectively. Like SARS-CoV-1, SARS-CoV-2 exploits the ACE2 receptors to enter the host cells; nevertheless, recent bioinformatics insights suggest a potential interaction of SARS-CoV-2 with the «moonlighting protein¼ CD26/DPP4, exactly how MERS-CoV works. CD26/DPP4 is overexpressed on T-helper type 1 (Th1) cells and its expression increases with aging, all factors which could well explain the Th1 immune lockdown, especially in the elderly, during fatal SARS-CoV-2 infections. Facing with this scenario, it is possible that Th1 and T-cytotoxic lymphocytes are the immune cells most affected by SARS-CoV-2, and that the immune system is forced to mount a T-helper type 2 (Th2) response, the only one still mountable, in the attempt to counteract the viral load. However, in this way, the symptomatic patient experiences all the negative effects of the Th2 response, which can seriously aggravate the clinical picture.


Subject(s)
Coronavirus Infections/immunology , Dipeptidyl Peptidase 4/immunology , Pneumonia, Viral/immunology , Th1 Cells/immunology , Adult , Aged , Autopsy , Betacoronavirus , COVID-19 , Computational Biology , Gene Expression Regulation , Humans , Immune System , Italy , Male , Middle Aged , Pandemics , Protein Binding , SARS-CoV-2 , T-Lymphocytes, Cytotoxic/virology , Th1 Cells/virology
SELECTION OF CITATIONS
SEARCH DETAIL